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Abstract 

The method of point-group determination from con- 
vergent-beam electron diffraction patterns has been 
established by Buxton, Eades, Steeds & Rackham 
[Philos. Trans. R.  Soc. London  (1976), 281, 171-194]. 
However, Table 2 given by them is inconvenient for 
practical purposes, since many symmetries of the 
dark-field and +G dark-field patterns are not given and 
are left for the reader's consideration. The table is 
improved and completed with the help of some new 
symmetry symbols and illustration of symmetries. The 
new table makes the point-group determination easy 
and quick. The symmetries of the symmetrical many- 
beam convergent-beam electron diffraction patterns 
have been studied by Tinnappel [PhD Thesis (1975), 
Tech. Univ. Berlin l using group theory. It is shown that 
the graphical method used by Buxton et al. can reveal 
the symmetries of these patterns. A method of 

* Present address: Hitachi Research Laboratory, Hitachi 319-12, 
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point-group determination which uses three types of 
symmetrical many-beam patterns, the hexagonal six- 
beam, square four-beam and rectangular four-beam 
patterns, is described. This method requires only one 
photograph in determining most diffraction groups. 
This fact means that the method is more convenient 
and reliable than that of Buxton et al., since their 
method requires two or three photographs for most 
cases. Experimental results which verify the theoretical 
ones are given. The characteristic features of the 
symmetrical many-beam method are discussed. 

Introduction 

The recent crystallographic studies by means of 
convergent-beam electron diffraction (CBED) orig- 
inated with Goodman & Lehmpfuhl (1965), although 
the earlier work by Kossel & M611enstedt (1939) was 
done about four decades ago. They obtained CBED 
patterns by converging a conical electron beam of an 
angle of more than 10 -2 rad on a small area of a 
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specimen (~300/k~Z~) which had a uniform thickness 
and no bending. Instead of the usual diffraction spots, 
diffraction disks are produced. The diffracted intensity 
in a disk can be compared with that calculated on the 
basis of the dynamical theory of electron diffraction. 

Goodman & Lehmpfuhl (1967) applied CBED to 
the precise measurement of the low-order structure 
factors of MgO. When their work is checked from 
the viewpoint of diffraction symmetry, an important 
symmetry is found in the 200 diffraction disk: that is, 
the intensity distribution in the disk is symmetric with 
respect to the Bragg position. It is noted that the 
equivalent symmetry had been already observed in a 
bend contour of an electron microscopic image, 
although little interest had been shown in it. Pogany & 
Turner (1968) revealed, using the reciprocity theorem, 
that the symmetry is produced by the mirror plane 
which is parallel to the specimen surface and passes 
through the midpoint of the specimen (horizontal 
mirror plane). They also revealed the diffraction 
symmetry caused by the inversion center. Using these 
results, they explained the symmetries of electron 
microscopic images. Although the results are applicable 
to explain the symmetries of CBED patterns, attention 
was not paid to CBED patterns at that time. 

Following this, two CBED studies appeared in which 
the polarity or the lack of inversion center in a crystal 
was detected. Goodman & Lehmpfuhl (1968) ob- 
served the intensity difference between the hkl and the 
hkl reflection disks from hexagonal cadmium sulfide. 
Tanaka & Lehmpfuhl (1972) detected the polar axis of 
barium titanate and observed its change in the 
tetragonal and the orthorhombic phases. 

Johnson (1972) showed that the symmetries of 
CBED patterns are governed not by the symmetry of 
the unit cell but by that of the whole specimen. That is, 
he obtained the result that a graphite specimen which 
contains a stacking fault parallel to the specimen 
surface gives rise to a threefold symmetry in a CBED 
pattern taken with [0001] electron incidence, although 
its unit cell has the sixfold rotation axis in the c axis. 

Using the reciprocity theorem Goodman (1975) 
revealed the symmetries of the CBED patterns caused 
not only by the inversion center and the horizontal 
mirror plane but also by the twofold axis which is 
parallel to the specimen surface and passes through the 
midpoint of the specimen (horizontal twofold axis). He 
tested the theoretical results using MgO crystals, and 
determined the space group of a mineral biotite by 
detecting a horizontal twofold axis. Buxton, Eades, 
Steeds & Rackham (1976) dealt with a perfect 
crystalline specimen which was plane parallel and 
extended infinitely in two dimensions. The specimen 
had ten point-group symmetry elements. It was found 
that the symmetries of CBED patterns caused by four 
of the elements can be understood by the help of the 
reciprocity theorem. They revealed the symmetry 

caused by the fourfold rotary inversion, which is the 
fourth and last symmetry element that needs the help of 
the reciprocity theorem. Buxton et al. constructed the 
31 diffraction groups from the ten symmetry elements 
and revealed the CBED symmetries caused by them 
using a graphical method. The groups are isomorphic 
to the Shubnikov groups of colored plane figures. But, 
the diffraction groups are convenient for CBED study, 
since they are represented by the symbols which relate 
directly to the symmetries of CBED patterns. They 
made clear for each crystal point group the diffraction 
group expected when the electrons are incident parallel 
to a given zone axis of a crystal. They established the 
method to determine the diffraction group of a 
plane-parallel perfect crystalline specimen from a set of 
CBED patterns and to know the crystal point group. 

On the other hand, Tinnappel (1975) studied by a 
group theoretical method the symmetries in a CBED 
pattern which consist of many dark-field patterns. The 
pattern is called the symmetrical many-beam (SMB) 
CBED pattern. He demonstrated theoretically the 
symmetries of the SMB CBED patterns for various 
combinations of symmetry elements. Tinnappel & 
Kambe (1975) extended the work systematically to all 
possible combinations of symmetry elements. How- 
ever, the details of the results have not been published 
until now. Tanaka & Saito (1981) briefly reported the 
diffraction-group-determination method which uses the 
three special cases among the symmetrical many-beam 
cases studied by Tinnappel (1975). 

In the present paper, Table 2 of Buxton et al. (1975) 
is improved and completed using some new symmetry 
symbols, in order to find easily the symmetries 
appearing in the dark-field pattern and +G dark-field 
pattern for each diffraction group. The symmetries of 
both the patterns are illustrated. It is shown, as an 
example, for the diffraction group 31R that the 
symmetries of a SMB CBED pattern can be also 
obtained by the graphical method used by Buxton et al. 
(1976). The symmetries of the patterns obtained for all 
but five of the diffraction groups are illustrated and 
tabulated. Two experimental examples, which are in 
good agreement with the theoretical results, are given. 
The characteristic features and the advantages of the 
symmetrical many-beam method in determining crys- 
tal point groups are described. 

Improvement of symmetry table 

The ten symmetry elements of a perfect crystalline 
specimen which is plane parallel and infinite in two 
directions, x and y, consist of six two-dimensional 
elements and four three-dimensional ones. The former 
transforms an arbitrary coordinate (x,y,z)  into 
(x' ,y ' ,z),  z remaining the same. The latter transforms a 
coordinate (x,y,z) into (x ' ,y ' ,z ' ) ,  where z' :/: z. The 1-, 
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Table 1. Symmetry elements and diffraction groups of  a plane-parallel specimen 

1 2 3 4 6 m 2m(m) 3m 

1 I 2 3 4 6 m 2m(m) 3m 
(m') ll~ I k 21 k 31R 41R 61R ml R 2m(m)l~ 3ml R 
(i) 2~ 2 k (21u) 6 R (41R) (61R) 2R m(mu) (2m(m)lR) 6Rm(mR ) 

(2') mu mu 2mR(mk) 3m R 4 m R ( m R )  6mR(mR) (2R m(mR)) (2m(m)IR) (3mlR) 
(mlR) (4R(m)mR) (6R rn(mR)) 

(~,) 4R 4 k (41R ) 4R m(mR) (4R m(mR)) 

4m(m) 

4m(m) 
4m(m) lR 

(4m(m) lR) 

(4m(m)l R) 

(4m(m)l R) 

lk.2 R = 2, 2R.2 R = 1, mR.2 R = m, 4R.2 R = 4, IR.m R = rn.mR, IR.4 R = 4.1R, m~.4 R = m.4 R. 

6re(m) 

6m(m) 10 
6m(m)l R 10 

(6m(m)l R) 4 

(6m(m)l R) 5 

2 

2-, 3-, 4- and 6-fold rotation axes which are parallel to 
the surface normal and the mirror plane m which 
includes the surface normal (vertical mirror plane) are 
the two-dimensional symmetries. The three-dimen- 
sional symmetries consist of the horizontal mirror plane 
m', the inversion center i, the horizontal axis 2' and the 
fourfold rotary inversion 4 whose axis is parallel to the 
surface normal. The respective symbols of Buxton et al. 
are 1R, 2R, m R and 4 R for the elements m', i, 2' and 4. 

It is. worth while noting how the diffraction groups 
are constructed by combining the symmetry symbols of 
Buxton et al. (Table 1). Two-dimensional symmetry 
elements and their combinations are written in the first 
row of the table. The third symmetry m in parentheses 
means that it is introduced automatically when the 
former two symmetry elements are combined. Three- 
dimensional symmetry elements are given in the first 
column. The equations given below the table show that 
any additional three-dimensional symmetries do not 
occur by combining two symmetry elements in the first 
column. Therefore, the 31 diffraction groups are 
produced by combining the elements of the first column 
with those of the first row. The diffraction groups in 
parentheses indicate that the groups have appeared 
somewhere before. In row 5, two diffraction groups are 
written in three boxes. These two groups are produced 
when the symmetry elements are combined at re- 
latively different orientations. In row 6, five boxes are 
empty, because the 4 cannot be combined with 
threefold and sixfold axes. In column 12, the number of 
independent diffraction groups in each row is given. 

When a CBED pattern is taken with the electron 
incidence parallel to a zone axis, the pattern of the 
transmitted beam is called the bright-field pattern (BP) 
and the pattern formed by the transmitted beam and all 
the diffracted beams is called the whole pattern (WP). 
When a CBED pattern is taken at the Bragg setting of 
a reflection +G, the pattern of the diffracted beam is 
called the dark-field pattern (DP). When the dark-field 
pattern and another dark-field pattern taken at the 
Bragg setting of the reflection - G  are placed at either 
side of the zone axis, the pattern consisting of these two 
patterns is called the +G dark-field pattern (+DP). The 
method of Buxton et al. determines the diffraction 
groups from the four CBED patterns appearing in three 
photographs. Fig. 1 shows the symmetries of CBED 
patterns, which visualize the symmetries expressed by 

the symbols used in Table 2. The first four figures show 
the symmetries of the dark-field pattern. The cross in a 
disk indicates the exact Bragg position of a reflection. A 
cross outside a disk indicates the zone axis. These 
figures are also applicable to the symmetries of the 
bright-field pattern, when the disk is shifted, so that its 
center coincides with the zone axis. The other figures 
represent the symmetries of + G dark-field patterns. The 
symbols above the disks and between a pair of disks 
express the symmetry elements of the specimen. The 
symbols below the disks express the symmetries of 
CBED patterns. When two vertical mirror planes are 
present, the mirror symmetry due to the first one is 
written as m v and that due to the second as my,. The 
mirror symmetry due to a horizontal twofold axis is 

+ + + + ~ + ~ + G  

1 1A rn2 mv 2 

I ÷ • " + m - -  

2R m~ my. mv'lR 21, 

+ + + -t- + 

2m. (m2) 2mv.(mv) 2,mv4m21 2Rm, (my}  21Rmv.(m v) 

Fig. 1. Symmetries of  dark-field patterns and + G  dark-field 
patterns. 
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Table 2. Symmetries of  the zone-axis and two-beam 
CBED patterns 

All the possible symmetries of  dark-field and + G  dark-field 
patterns are listed. 

Columns are: I Diffraction group; II Bright-field pattern; III, 
Whole pattern; IV Dark-field pattern; V + G  dark-field patterns; 
VI Projection diffraction group. 

I II 

I I I 
I e 2 1 

(le) 
2 2 2 
2 e 1 1 
21 e 2 2 

m 
me (mz) 1 

m m r m v 

m l a 2ram m,. 
(m,. + m z + (le)) 

2m R ra e 2mm 
(2 + m z) 2 

2mm 2mvm r, 2m,,m v 

2e mm e mr mv 

2rnm I e 2mvm r, 2myra v, 

4 4 4 
4 e 4 2 
41 e 4 4 

4mm 
4m~me (4 + m2) 4 

4mm 4mvm r, 4mvm r, 

4 e mm R 4mm 
(2mrm v + m 2) 

4ram 1 e 4mrm ~, 

3 3 
31 e 6 

(3 + 1 e) 

3m R 3m 
(3 + m,) 

3m 3m,. 

3m 1R 6mm 

(3m,. + m2 + (1~}) 
6 6 
6R 3 
61X 6 

6mm 
6m~mR (6 + m 2) 

6ram 6mrm v 

6RmmR 3m,, 

6ram 1 e 6m,,m~, 

III IV V 

I 1 
2 =  1 e 1 

VI 

I 2 
1 2 e 21 e 
2 2I e 

{tin e (' 
rn 2 1 

{1 
m~ ml R 

m~ 1 
{2 {1 

rn~ I e 
2m,.m 2 1 

m2 2me(m2) {1 
m~ 2m~,(m,.) 2mini e 
1 2e 
m,. 2R rnv,(m 2 ) 
m,, 2eme(mr) 
2 21R 
2m~m 2 21em~,(m~) 

1 2 
1 2 41 e 
2 21e 

m 2 2me(m2) 

m,. 2rG,(m~.) 4 m m l  e 
f 1 2 

2mrmv { mz 2me(m,_) 
t mr 2my(mr)  

4m~mr, {2 21 e 
2mrm2 2 le m~,(m,,) 

3 1 1 
3 2 1 31R 

me 
m 2 1 

rn~, 1 {, 
my le 3m,. { 2 

2m,.m, 1 

6 1 2 
3 1 2 e 
6 2 21R 

6 {1 2 
m, 2me(m,) 

2m,.,(m,.) 
l 2 e 

3m,. m~ 2em,.,(m,) 
m,. 2 R mR(m,.) 
2 6m,.m,., {2m~.m,. 21e 

21amr,(m,.) 

3mlR 

61 e 

6mm I e 

written as m 2. The symmetries shown in parentheses 
are those introduced automatically when the first two 
symmetries are present. 

In order to determine the diffraction group easily and 
quickly from the symmetries of CBED patterns, Table 
2 in the paper of Buxton et al. is improved and 
completed. All the possible symmetries of dark-field 
and +G dark-field patterns are given in Table 2 of the 
present paper using the symbols introduced above. 
When a bright-field pattern has a higher symmetry than 
a whole pattern, the symmetry elements which pro- 
duce the former pattern are noted in parentheses in 
column 2. This makes clear the three-dimensional 
symmetry elements which cause the symmetry differ- 
ence. In the table of Buxton et al., the mirror symmetry 
m in the dark-field pattern is ambiguous whether it is 
caused by the vertical mirror plane (my) or by the 
horizontal twofold axis (m2). In the present table, the 
symmetry symbol m is rewritten as the symbols m v and 
m z. As a consequence, it is found that the diffraction 
groups 2RmmR, 4Rmm k and 6Rmm e can produce three 
symmetries 1, m 2 and m v in the different dark-field 
patterns, and the diffraction groups m and 2Rmm R and 
3m and 6Rmm g are identified without confusion. All the 
possible symmetries of + G dark-field patterns are listed 
in column 5, whereas most symmetries are omitted in 
their table. It is noted that some diffraction groups 
show two different symmetries in +G dark-field 
patterns for a branch of a dark-field pattern. When 
Table 2 is used together with Fig. 1, the diffraction 
groups are easily and quickly identified from the 
symmetries of CBED patterns. 

Point-group determination by the symmetrical 
many-beam method 

Graphical method 

We consider the hexagonal six-beam, the rec- 
tangular four-beam and the square four-beam cases, 
where these beams are simultaneously set at the Bragg 
conditions. The two-beam (the transmitted and a 
diffracted beam) case was thoroughly studied by 
Buxton et al. The symmetrical three-beam case is 
omitted, since the symmetry I k cannot be observed (see 
Discussion). The eight-beam and the twelve-beam cases 
are useful in principle, but the symmetry tables for 
these cases become too complicated for practical use. 
Reflections of greater indices are inevitably excited. The 
symmetries observed in the reflections are often 
unreliable, since the diffracted intensity is appreciable 
only in a small central region of the reflection disks. 
The observed symmetries are liable to deteriorate, since 
the incident beam makes a considerable angle to the 
surface normal of the specimen to excite eight or twelve 
beams. For these reasons, the eight- and twelve-beam 
cases are not dealt with. 
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The symmetries appearing in the symmetrical many- 
beam CBED patterns are obtained by the graphical 
method used by Buxton et al. for all the diffraction 
groups. Fig. 2 illustrates the procedure to obtain the 
symmetries of SMB CBED patterns for the diffraction 
group 31R as an example. We consider the hexagonal 
six-beam case. In (a), the symmetry elements of the 
diffraction group are shown. The reflection disks are 
denoted by 0 (tramsmitted beam), G, F, F ' ,  S and S'.  
The cross (+) at the center shows the zone axis 
concerned. The basic circle of the stereographic 
projection is not shown and instead the diffraction 
disks are drawn. The ingoing beam coming from above 
the specimen is denoted by the cross (x). This is 
projected onto the upper projection plane of the 
stereogram. When a beam is projected onto the upper 
projection plane, the reflection disk which includes the 
beam is drawn by the broken circle. When it is 
projected to the lower projection plane, the disk is 
drawn by the solid circle. The transmitted and 
diffracted beams leaving downward from the specimen 
are denoted by the other marks. They are projected to 
the lower projection plane of the stereogram. The solid 
circle of the disk G is drawn for the diffracted beam (O) 
and the broken circle of the disk is for the incident 
beam (×). The lines in the disks F, F ' ,  S and S '  are 
drawn perpendicularly to the lines which pass through 
the centers of the disk 0 and the diffraction disks. They 
help to see the symmetry m2. 

In Fig. 2(b) the procedure to obtain the symmetry in 
the disk 0 is illustrated. The first figure shows the 
original process which is taken out of Fig. 2(a). The 
second figure shows the process in which the running 
direction of the beam is reversed to that of the first one. 
As the sign of the tangential component of the beam is 
reversed, the labels of the disks 0 and G are altered to 
and 6, respectively. The reciprocity theorem (RT) 
predicts that the outgoing beams in the first and second 
figures should give the same observed intensities. The 
third figure is produced by operating the horizontal 
mirror symmetry (m') on the second one. The incident 
beam again impinges from above on the specimen. The 
first and third figures are compared in the final figure. 
This shows that the intensity in the direction shown by 
the mark O in the disk 0 when the reflection G is set at 
the Bragg condition is equal to that shown by the mark 
O in the disk O when the reflection G is set at the Bragg 
condition. We express the symmetry of the pattern with 
the symbol of the symmetry element operated. Then, 
this symmetry is denoted as 1R. The symmetry is 
reproduced by a conventional method which operates 
two-dimensional translation and rotation, and 1 n. That 
is, the disks 0 and G in the final figure are translated so 
that the disk 0 superposes on the disk 0. The mark O is 
rotated by n rad (1R) about the center of the disk 13. The 
mark O in the disk 0 coincides with that in the disk 13. 
This method has a fragile theoretical basis, but gives 
correct results for all the other cases as seen below. 

F S 

@ @ 
,"-", original G ) I original -4- ~ G ~I -l- ',,.__x, 

"~F " RT 31R ,~ ,~® R'r + ", "~; 

O G .... .  
- -  - -  4 ', ;'; - {E, R~,R~',m'} ..... " 

, _ j /  X . . j  

" ' - "  m '  x ingoing beam original @ -{- ( G!~ original.{_@ m' X~ @ "~" @ 
0 transmitted beam ---- R~ 

¢®@ diffracted beam @ .... , @ R, ~ ( "Gx" ) 
• • RT Jr- ( 6 O! RT + "---" 

@ - 
original ('~ ") ot _~"~ 

_@@ ., @ -c  @ @O @@+ 
~ ~ @ @  (~ (  ~ ~ ~  fi na, 

final final 

@ + @ @ ' J r ' @  f i n a l + @  

(a) (b) (c) (d) (e) 

_@@ _@@ 

(f) 
Fig. 2. Procedure to obtain symmetries of hexagonal six-beam CBED pattern from the diffraction group 31R. 
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Therefore, it has a practical advantage for finding the 
symmetries of observed patterns easily. 

The symmetry in the disk G is shown in Fig. 2(c). 
This is the same as that obtained by Buxton et al. The 
first figure is taken out of Fig. 2(a). In the second 
figure, x and • are interchanged. Contrary to the first 
figure, the broken and solid circles correspond to • and 
×, respectively. The third figure is obtained by 
operating the horizontal mirror symmetry. The ingoing 
beam (×)  impinges from above on the figure. The 
diffracted beam ( • )  leaves downward from the figure. 
The broken and solid circles again correspond to × and 
• , respectively, as in the first figure. Finally, the 
symmetry 1R is obtained in the disk G. 

The symmetry in the disk F is derived in Fig. 2(d). In 
this case the rotation of 2n/3 rad is operated about the 
zone axis after operating the horizontal mirror sym- 
metry to the reciprocal process (fourth figure). When 
the first and the fourth figures are compared, the 
directions in which the same diffracted intensity is 
observed are found in the disks F and F' .  This 
symmetry is denoted as 3 R. The conventional method 
produces the mark • in the disk F '  from that in the 
disk F by using the operation 3 and R in the following 
way. In the final figure the disk F is rotated about the 
center of the disk 0 by 2n/3 rad (3) to coincide with the 
disk F ' ,  and the mark • in F is rotated by n rad (R) 
about the center of the disk F ' ,  resulting in the mark ~D 
in the disk F' .  When 3 -1 is operated instead of 3, the 
equivalent symmetry is produced in the second setting 
of the six beams, which is obtained by rotating the 
whole of the final figure anticlockwise by 2n/3 rad 
about the zone axis. When the threefold rotation is not 
operated, the equivalent symmetry is also obtained in 
the third setting of the six-beam case which differs by 
--2n/3 rad from the final figure. 

The symmetry in the disk S is derived in the same 
manner (Fig. 2e). The intensity distribution in the disk 
S of a six-beam setting is related with that in the disk 
of another setting which differs from the former setting 
by n rad about the zone axis, similarly to the 
transmitted-beam case. The symmetry is also denoted 
as 3 R. This symmetry is conventionally obtained by the 
same manner as that carried out in the transmitted- 
beam case. By referring to Fig. 2(f) ,  six beams at the 
right side are translated so that the disk 0 superposes 
on the disk 0 in the six beams at the left side. The disk S 
is rotated anticlockwise by 2n/3 rad (3) about the 
center of the disk 13, and the mark ® in the disk S is 
rotated by n rad about the center of the disk S. Then, 
the mark in S coincides with that in S. In Fig. 2(f) ,  the 
results obtained above are shown together. Six settings 
are possible in the symmetrical six-beam case. Three 
settings among them, two of which make an angle of 
2n/3 rad, show the equivalent symmetries. The sym- 
metries of the other three settings are equivalent but are 
different from those of the former three settings. Thus, 

it is enough to draw two representatives as shown in 
Fig. 2(f ) ,  which differ by n rad about the zone axis. 

The conventional method has a practical advantage 
in obtaining symmetry relations. It can easily find the 
symmetries 3n, 4R and 6 R in a SMB setting and m v, m R, 
3 R, 4 R and 6 n between two SMB settings without 
involving the reciprocal process as shown in Fig. 2. In 
the method the symmetry elements are operated as 
follows: Two-dimensional rotation axes are operated 
about the center of the disk 0 instead of about the zone 
axis. The vertical mirror plane is translated so as to 
pass through the center of the disk 0 when it does not 
already pass through the center of the disk 8. When 
the symmetries between the different SMB settings are 
considered, the symmetry elements are operated after 
the disks 0 and 0 are superposed. The 1R, 2 R and m R 
are operated in the same manner as in the case of 
Buxton et al. 

Illustrations and tables 

Fig. 3 illustrates the symmetries of SMB CBED 
patterns for all the diffraction groups except for five 
groups. The exceptional five groups are 1, 1 R, 2, 2 R and 
21R. For these groups the two-beam case is ap- 
propriate. The many-beam case gives no more in- 
formation than the two-beam case, since they have only 
one three-dimensional symmetry element for any 
setting of the specimen crystal and one dark-field 
pattern is enough to find the element. In the six-beam 
and square four-beam cases, the symmetries for two 
settings are drawn and in the rectangular four-beam 
case the symmetries for four settings are shown. The 
orientation of the symmetry elements agrees with that 
of corresponding CBED disks. It is noted that the 
diffraction groups 3m, 3m R, 3ml R and 6Rmm R show 
different symmetries between two settings which differ 
by n/6 rad about the zone axis. Similarly, the 4Rmm R 
shows different symmetries between two settings which 
differ by n/4 rad. One can check that the conventional 
method to obtain symmetry relations gives the right 
answers for all cases. 

The symmetries illustrated in Fig. 3 are given in 
Tables 3, 4 and 5, which are applicable to the 
hexagonal six-beam, square four-beam and rec- 
tangular four-beam cases, respectively. In the fourth 
row of the tables the symmetries of zone-axis CBED 
patterns (BP and WP) are listed, since a zone-axis 
pattern is often used together with a SMB pattern. In 
the fifth row, the symmetries of a SMB pattern are 
listed. In the following rows, the symmetries between 
pairs of SMB patterns are listed. For six-beam, square 
four-beam and rectangular four-beam cases, a pair, two 
pairs and three pairs of settings are necessary to 
describe all possible symmetries, respectively. The 
symmetries in parentheses means that they add no 
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Fig. 3. Symmetries of hexagonal six-beam, square four-beam and rectangular four-beam CBED patterns for all diffraction groups 
except 1, 1R, 2, 2 R 21R. 
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Discussion 

Buxton et al. have established the method to determine 
the point groups from CBED patterns. Their method is 
based on the symmetry analysis of a zone-axis pattern 

more symmetry, although they are present. In the last 
row, the point groups which cause the symmetries listed 
in the upper rows are given. 

Experimental results 

Fig. 4 shows CBED patterns taken from a [ 111] pyrite 
(FeS2) plate at an accelerating voltage of 100 kV. The 
space group of FeS 2 is P2~/aJ and the diffraction 
group of the plate is 6 R. The zone-axis pattern (Fig. 4a) 
shows the threefold rotation symmetry in the bright- 
field and the whole patterns. The symmetric six-beam 
pattern (Fig. 4b) shows no symmetry higher than 1 in 
the disks 0, G, F and S and shows the symmetry 6 R 
between the disks S and S ' .  The same symmetries are 
also seen in Fig_. 4(c). It is found that the disks G and 
and F and F have the symmetries 2 R and 6 R, 
respectively IFigs. 4(b) and (c)]. These results agree 
exactly with the theoretical results given in Fig. 3 and 
Table 3. The table shows that the diffraction group 6 R 
can be identified from only one hexagonal six-beam 
pattern, since there is no other diffraction group which 
gives rise to the same symmetries in the six disks. When 
the method of Buxton et al. is used, three photographs 
or four patterns are necessary to identify the group 6 R 
(see Table 2). 

Fig. 5 shows CBED patterns taken from a [110] 
V3Si plate at an accelerating voltage of 80 kV. The 
space group of V3Si is Pm3n and the diffraction group 
of the plate is 2 m m l  R. The zone-axis pattern (Fig. 5a) 
shows 2mm symmetry in the bright-field and the whole 
patterns. All the symmetries expected from the diffrac- 
tion group 2mm 1 R, which are given in Fig. 3 and Table 
5, are observed in the rectangular four-beam patterns 
(Figs. 5b and c). The diffraction group 2 m m l  R can be 
also identified from one rectangular four-beam pattern, 
although two photographs or three patterns are 
necessary in the method of Buxton et al. These 
experiments confirm that the theoretical results are 
correct and show that the symmetrical many-beam 
method is quite effective to determine the point groups 
of crystals. 

(a) 

(b) 

(c) 
Fig. 4. CBED patterns from a [ 11 I] plate of FeS2: (a) zone-axis 

pattern, (b) and (c) hexagonal six-beam patterns. 
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and dark-field patterns taken at the Bragg settings of 
+G and - G  reflections. Two-dimensional symmetry 
elements are found from the zone-axis pattern. Three- 
dimensional symmetry elements are found mainly from 
dark-field patterns, although the bright-field pattern 
sometimes includes the information about the ele- 
ments. The symmetrical many-beam method finds 
plural three-dimensional symmetry elements in a SMB 
pattern and finds two-dimensional symmetry elements 
in a pair of SMB patterns. Therefore, the symmetrical 
many-beam method mainly aims to find three-dimen- 
sional symmetry elements. This fact contrasts with the 

(a) 

(b) 

(c) 
Fig. 5. C B E D  patterns from a [ 110] plate of  V~Si: (a) zone-axis 

pattern, (b) and (c) rectangular four-beam patterns. 
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Table 4. Symmetries of square four-beam CBED patterns 

P r o j e c t i o n  d i f f r ac t ion  g r o u p  

Diffraction group 

Two-dimensional symmewtry 
Three-dimensional symmetry  

Zone-axis pattern Bright-field pattern 
Whole-field pattern 

Square four-beam pattern 0 
G 
F 
FF'  

Two pairs of  square four-beam +0  
patterns A + G 

B F F '  
+ F  

00'  
A GG' 
C F S  

F S '  

(if) 

41R 4 m m l  R 

4 4 R 41R 4mRm R 4mm 4Rmm R 4 m m l  n 

4 (2) 4 4 4mm (_2rnm) 4mm 
4 m',  (i, 4) 2 '  4, 2' m' .  (i, 2'.  d.) 

4 4 4 4mm 4mm 4mm 4mm 
4 2 4 4 4mm 2mm 4ram 

1 1 1 m 2 m~ m 2 my m~(m2) 
1 1 1 n m 2 my m 2 m~ lnm.(m2) 
I 1 1 m 2 1 1 m 2 m 2 
1 4 n 4 n 1 m~ 4 R 4rim ,, 4rim ~, 

2 2 2(1R) 2m2 2m., 2m 2 2m., 2(ln)m,,(m2) 
2 2 21 n 2m n 2m., 2m n 2m., 21Rm¢(me) 
2 2 2 2m n 2 2 2m R 2m n 
1 4 n 4 n 1 m . ,  4 R 4 n my, 4 n m . ,  

4 4 4 4m 2 4my,, 4m. 4m 2 4mv,,(m2) 
4 4 R 41 n 4m n 4my,, 4nm ~ 4Rm n 41Rmv,,(mn) 
4 1 4 4m n 4 m R 1 4 IRmv,,(mR) 
I 1 1 n 1 my,, m~ 1 lnm~, ,  

Point group 4 4 4 /m 432, 422 4mm 43m, 42m m3m, 4 / m m m  

Table 5. Symmetries of rectangular four-beam CBED patterns 

P r o j e c t i o n  d i f f r ac t ion  g r o u p  m l  n 2 m m l n  

Diffraction group m R m ml  R 2mRm R 2mm 2Rmm R 2 m m l  R 

Two-dimensional symmetry m m 2 2mm m 2mm 
Three-dimensional symmetry  2' m' ,  2 '  2' 2',  i m' ,  2',  i 

Zone-axis pattern Bright-field pattern m m 2mm 2mm 2mm m 2mm 
Whole-field pattern 1 m m 2 2mm m 2mm 

Rectangular four-beam pattern 0 1 1 1 1 1 1 1 
G 1 1 1R 1 1 1 I n 
F m z 1 m z m 2 1 m z m z 
S 1 1 1 m 2 1 I m 2 

Three pairs of  rectangular OaOgt rn 2 1 m2 m2 my my(m2) mv(rn2) 
four-beam patterns A G H  1 1 1 m R m~ mv mym n 

B F F  1 1 1 1 m~ 2Rm ~ 2Rm v 
S S '  1 1 1R 1 my m~ mvl  R 

~')  ~ ( ~ )  ( ~  % 0 , ,  1 m~ m~ m 2 m~, 1 me(mz) 
i 

® o 0 1 ( ~  c (~) A G H  mn m~ mvm R m R m v, m R my, mR 
r ~  r~rf f~ ( ~  C FF'  1 m v rnv l n 1 rn v, 1 rnv, 1 g 

B ^ SrS 1 m v my 1 m v, 2 R 2 n m v, 

(~) 0a0 d 1 1 1 n 2 2 1 2(1R) 
(III) A GG 1 1 1 2 2 2 R 21 n 

Fff '  1 1 1 2m g 2 1 2m g 
SVS ' m n 1 m R 2m R 2 m R 2m n 

Point group 2, 222. mm2, 4. 
2., 422, 4mm, 
~.2m, 32, 6 ,622,  
6mm, f m 2 ,  23, 
432, 43m 

m, mm2, 4mm, mm2,  4mm, 222,422,  mm2, 6m2 2/m, mmm,  4/m,  mmm,  4 / m m m ,  
2.2m, 3m, 6, 42m, 6ram, 42rn, 622, 4 / m m m ,  3m, m3, m3m, 
6mm, 6m2, 6m2, 43m 23, 432 6/m, 6 /mmm,  6 / m m m  
43m m3, m3m 

method of Buxton et al., in which two-dimensional mirror operation cannot bring back the outgoing beam 
symmetry elements are identified in the first place, in the reciprocal process into the disk which includes 

By referring to Tables 3-5, characteristic features of the original outgoing beam, except for disk G. The 
the symmetrical many-beam method are described. The symmetry 1R occurs between two disks of different 
symmetry m 2 can appear in every disk of a SMB . SMB settings as is seen in Fig. 2(b). In the hexagonal 
pattern. That is, it occurs in a disk when a horizontal six-beam case, the inversion center (i) produces the 
twofold axis is present parallel to the line connecting symmetry 6 R between the disks S and S '  by the 
the centers of the disk and the disk 0. The symmetry 1R combination with the vertical threefold axis. This 
due to the horizontal mirror plane, however, appears means that a hexagonal six-beam pattern enables us to 
only in a disk G of a SMB pattern. The horizontal distinguish whether the specimen has an inversion 
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center or not. On the other hand, the pattern does not 
show any difference for the diffraction groups 3 and 6 
which have different vertical rotation axes. The 
diffraction group 3m cannot be distinguished from the 
groups 3 and 6 or from the group 6mm in either setting 
of two possible settings (see columns 1, 4, 6 and 10 of 
Table 3). However, it is found that most diffraction 
groups can be identified from one photograph, which 
makes a strong contrast to the method of Buxton et al. 
This fact is very important from an experimental 
viewpoint because symmetries obtained by comparing 
two photographs are unreliable in critical cases, as the 
photographs may be taken from different specimen 
areas. In the square four-beam case, the fourfold rotary 
inversion (~,) produces the symmetry 4 R in the disks F 
and F' .  The inversion center itself does not exhibit any 
specific symmetry in a SMB setting, but its effect 
appears through the horizontal mirror plane which is 
automatically introduced when the inversion center is 
added to the vertical twofold axis (see the third row of 
Table 4). It is emphasized that all seven diffraction 
groups can be identified from one square four-beam 
pattern. In the rectangular four-beam case, the in- 
version center not only directly but also indirectly 
produces no specific symmetry. The rectangular 
four-beam pattern cannot distinguish the diffraction 
groups m and 2mm, since they differ only in two- 
dimensional symmetry elements. The diffraction group 
m R has only a horizontal twofold axis. The 2Rmm R has 
a vertical mirror (m v) and the inversion center (i) as 
well as the horizontal twofold axis. These two groups, 
however, cannot be distinguished from one rectangular 
pattern, since the pattern is insensitive to my and i. On 
the other hand, a rectangular four-beam pattern can 
distinguish the diffraction groups m and 2Rmm R and 
2mm and 2mml R, whereas the method of Buxton et al. 

requires two or three photographs to identify the 
groups, because the zone-axis pattern is insensitive to 
three-dimensional symmetry elements. A rectangular 
four-beam setting is also possible for the diffraction 
groups in which hexagonal six-beam setting or square 
four-beam setting was considered. Symmetries of such 
a rectangular four-beam pattern can be understood by 
finding the symmetry elements active to the pattern out 
of all the elements of the diffraction groups. 

When a pair of symmetrical many-beam patterns are 
taken, all the diffraction groups are completely identi- 
fied. For practical purposes, however, the use is 
recommended of a symmetrical many-beam pattern 
and the zone-axis pattern, since two-dimensional 
symmetries are found very easily in the zone-axis 
pattern. In conclusion, we emphasize again that the 
symmetrical many-beam method is quite an effective 
method to determine the point groups of crystals. 
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Strengthened Translation Functions. An Automated Method for the Positioning of a 
Correctly Oriented Fragment by Translation Functions in DIRDIF Fourier Space 
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Abstract 

Translation functions are used to determine the position 
of a correctly oriented molecular fragment. Usually, 
translation functions are defined for the Patterson 
space. A new translation function is presented, which is 

0567-7394/83/030368-09501.50 

defined as a convolution in electron-density space, and 
expressed as a Fourier synthesis. After expansion of the 
reflection data to space group P1, coefficients for the 
synthesis are obtained by direct methods on difference 
structure factors (the DIRDIF procedures). From the 
position of the maximum in the translation function, the 
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